A new proof for the Hartman-Grobman theorem for random dynamical systems
نویسندگان
چکیده
منابع مشابه
The Hartman-Grobman Theorem
The Hartman–Grobman Theorem (see [3, page 353]) was proved by Philip Hartman in 1960 [5]. It had been announced byGrobman in 1959 [1], likely unbeknownst to Hartman, and Grobmanpublished his proof in 1962 [2], likely without knowing of Hartman’s work. (Grobman attributes the question to Nemycki and an earlier partial result to R.M. Minc (citing Nauč. Dokl. Vysš. Školy. Fiz.-Mat. Nauki 1 (1958))...
متن کاملInfinitesimal Hartman-Grobman Theorem in Dimension Three.
In this paper we give the main ideas to show that a real analytic vector field in R3 with a singular point at the origin is locally topologically equivalent to its principal part defined through Newton polyhedra under non-degeneracy conditions.
متن کاملa new type-ii fuzzy logic based controller for non-linear dynamical systems with application to 3-psp parallel robot
abstract type-ii fuzzy logic has shown its superiority over traditional fuzzy logic when dealing with uncertainty. type-ii fuzzy logic controllers are however newer and more promising approaches that have been recently applied to various fields due to their significant contribution especially when the noise (as an important instance of uncertainty) emerges. during the design of type- i fuz...
15 صفحه اولA new proof for the Banach-Zarecki theorem: A light on integrability and continuity
To demonstrate more visibly the close relation between thecontinuity and integrability, a new proof for the Banach-Zareckitheorem is presented on the basis of the Radon-Nikodym theoremwhich emphasizes on measure-type properties of the Lebesgueintegral. The Banach-Zarecki theorem says that a real-valuedfunction $F$ is absolutely continuous on a finite closed intervalif and only if it is continuo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 2019
ISSN: 0002-9939,1088-6826
DOI: 10.1090/proc/14707